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Abstract—The modes of collapse of a rigid-plastic circular cylindrical shell subjected to centrally applied,
opposed point loads in which the deformation is not confined to the vicinity of the loaded points are
analysed. It is shown that the solution is analogous to that of an equivalent beam-foundation problem and
the analogy is discussed. The results are compared with observations made during a series of experiments
concerned with the crushing of aluminium tubes by opposed indenters.

NOTATION

diameter of cylinder
rate of dissipation of energy in plastic work
half-length of beam or cylinder
M, fully plastic moment of beam
My, N, fully plastic bending moment and membrane force per unit length for rigid-plastic cylinder
M,, M;, M,, bending and twisting unit moments acting on shell element
M., My, M,, axial, circumferential unit bending and twisting moments for circular cylindrical shell
Ni,N;,N;» membrane direct and shear forces per unit length acting on shell element
N..N, axial and circumferential unit forces for circular cylindrical shell
P applied force
P, collapse load per unit length for circular cylinder under ring load
Py collapse load for rigid-plastic beam-foundation system
P collapse load for “pinched” cylinder
P; collapse load for localised collapse mode (Fig. 2d)
Py collapse load for reversed ovality mode (Fig. 2c)
Py collapse load for ring mode (Fig. 2b)
P,P,,P; collapse loads for centrally loaded beam on rigid-plastic foundation corresponding to modes shown in Fig.
4(b, ¢ and d)
PPy, Py collapse loads for ring-loaded cylinder corresponding to modes shown in Fig. 5(b, ¢ and d)
T radius and wall-thickness of ring-loaded cylinder.
S area of region idealised by generalised plastic hinge (Fig. 1)
b constant occurring in eqn (9) ef seq equal to 0.106
¢ constant occurring in eqn (9) ef seq equal to 0.414
h
!
Po
t

[pESRe]

width of region idealised by generalised plastic hinge (Fig. 1)
length of generalised plastic hinge (Fig. 1)
rigid-plastic foundation yield pressure
radius and wali-thickness of “pinched” cylinder
s,s* half width of localised zone of collapse for *‘pinched” cylinder (Fig. 2d) and its optimum value
Sasa*  half-width of localised zone of collapse for ring-loaded cylinder (Fig. 5d) and its optimum value
s,Sg*  half-width of localised zone of collapse for rigid plastic beam-foundation system (Fig. 4d) and its optimum
value
u; = (u,v,w) displacement components
a,a* normalised slope of top generator of “‘pinched” cylinder and its optimum value for reversed ovality (Fig. 2c)
B inclination of generalised plastic hinge to coordinate directions n; (Fig. 1)
8 load-deflection for crushed tubes
€,6,,% membrane strain rates for shell element
@ polar coordinate
Ki,K2,K2 curvature and twist rates for shell element
n coordinate directions for analysis of generalised hinge (Fig. 1)
Q) angular velocity of edges of cylindrical shell panels (see Appendix)
0,00, components of relative rotation rates between regions A and B (Fig. 1) along the 5, and 7, axes respectively
1,.(Y, relative rotation rates between conterminous zones in cylindrical shell

INTRODUCTION
The collapse of a rigid-plastic cylindrical shell under the influence of an axisymmetric ring load
has been examined by a number of authors[1-3]. The problem consists basically of an
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interaction between axial bending and circumferential stretching deformations of the shell wall.
These deformation modes and the geometry of the shell determine the collapse load and the
mechanism of collapse. The complexity of the solution depends to a large extent on the
particular yield surface used. The limited interaction yield surface in which the onset of yield
for membrane and bending deformations are determined independently (see Fig. 3) provides the
simplest solution.

Using this simple yield surface an interesting analogy emerges between this axisymmetric
shell problem and that of a rigid-plastic beam resting on a rigid-plastic Winkler foundation with
a concentrated load applied at a point along its length. In the analogy the yield moment of the
beam corresponds to the axial bending of the shell and the yield pressure of the foundation to
the circumferential stretching of the shell. Whilst it would appear that this analogy has not been
stated explicitly in the literature, its implicit use is clear in certain limit analyses involving
cylindrical shell components such as that found in the paper by Dinno and Gill[4].

The analogy between the behaviour of a cylinder under axisymmetric loading and a
beam-foundation interaction is well known in elastic shell theory[5]. Recently the analogy has
been extended by Calladine[6] to provide approximate solutions to problems involving non-
axisymmetric loading of elastic spherical and cylindrical shells. In particular, the problem of a
“pinched” cylinder (i.e. a cylinder subjected to a pair of diametrically opposed, radially inward,
point loads applied at its centre) was treated in some detail. By using simplified deformation
fields which satisfy the compatibility requirements, Calladine showed that for a long cylinder
the load was carried principally by an interaction between axial stretching and circumferential
bending of the shell wall. Retaining only the contributions to the elastic strain energy arising
from these two components of the deformation, the analogy with an equivalent beam-
foundation system became apparent. The fiexural rigidity of the beam derives from the axial
stretching of the shell and the foundation stiffness from the circumferential bending.

The analysis contained in this paper can be considered to be a formal attempt to extend the
analogy for the *‘pinched” cylinder problem into the realm of rigid-perfect plasticity. However,
consideration of the title problem arose mainly out of an interest in explaining certain features
of the behaviour of metal tubes when they are crushed between opposed indenters. This
problem has been surveyed experimentally by Watson et al.{7]. The work described in [7] was
principally concerned with the use of metal tubes as components of impact energy absorbing
systems. The use of simple metal structures and structural elements for this purpose leads to a
consideration of a number of interesting structural plasticity problems some of which have
recently been reviewed(8].

One of the basic features of the mode of deformation of tubes when they are crushed is that
the cross section of all or of a considerable portion of the tube undergoes plastic ovalisation. [t
is clear from [7] that a complete analysis of the tube crushing problem would be most complex.
However, a preliminary attempt is made below to investigate the influence of the geometrical
parameters on the mode of deformation by constructing a simple upper bound solution to the
problem. This is based on the assumption that ovalisation is a prime component in the
deformation mode for tubes of all lengths. It will be shown that the solution produced has many
of the features that one might expect from Calladine’s solution of the elastic problem. In
particular, a beam-foundation analogy is established which could be of use in the solution of
related problems.

In order to compare this upper bound solution with the behaviour of crushed tubes, the
relevant experimental observations are summarised and the question of the usefulness of the
analysis is discussed.

LIMIT ANALYSIS OF “PINCHED" CYLINDER
The mode of collapse of the cylinder is considered to be composed of a number of
inextensional regions separated by plastic hinges. The loading is not axisymmetric and
consequently neither is the velocity field which describes the incipient motion of the shell. This
has the effect that within certain of the plastic hinges there is plastic membrane action as well
as bending deformation. For this reason the discontinuity is termed a generalised hinge and its
treatment follows that given by Jones and Walters[9].
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Generalised plastic hinges

Figure 1 shows a plan view of a segment of a plastic region of width  and length I separating
two regions A and B. From [9], the rate at which energy is dissipated in plastic work within this
region, 9, is given by

s

The symbols used for the generalised stress resultants and deformation rates have their
usual meanings and are defined in the notation. S is the area of the deforming region. Suppose
that &; are the displacement rates in the n; directions and {}; are the components along the »;
axes of the relative rotation rates between regions A and B. If we assume that the displacement
rates vary linearly across the deforming region then the strain rates can be defined as

¢ = [u'ulzin B - (2] ZOS B ind so= [4,] cos B; [4,] sin B

where [] represents the difference between the values of the enclosed parameter in region B
and in region A. Similarly the curvature rates are

m=9‘s,:“3, k2=QZC’?Sﬁand2k12=Q]cosﬂ;QZSlnB.

Since dS = hdl, we can proceed to the limit of a line of discontinuity (h—0). Equation (1)
reduces to

@ = I{N.[u’,] sin B+ N, [ii,) cos B+ Ny [u] cos B+ Ny, [i,] sin B
!

+ M2k| + Ml.Ql sin B + MzQz cos B + M]Z\Q] [0 1] B + Mlznz sin B} dl. (2)

Velocity fields

The circular cylinder of radius 7, wall thickness ¢ and length 2L is loaded as shown in Fig.
2(a). It is assumed that each half of the cylinder has an incipient collapse mode which consists
in general of four panels I-IV which undergo inextensional deformation and a rigid end region
V, the various regions being separated by plastic hinges. Clearly if the deforming region extends
to the ends of the tube, region V does not exist.

Let us now define the velocity field associated with region I. It is shown in the Appendix
that the conditions of inextensibility together with the simple velocity field for a ring subjected

Fig. 1. Plan view of segment of plastic hinge connecting regions A and B from Ref. [8].
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{a)

Fig. 2. (a) Hinge system for general mode of collapse of rigid-plastic “pinched” cylinder. (b) Ring mode for
half of “pinched” cylinder. {c} Reversed ovality mode for half of “‘pinched” cylinder. (d) Localised mode
for half of “pinched” cylinder.

to the same system of loads leads to the following:

In region I, x >0 and 0 < 8 < 72

= arzﬂ(—g—e-%sin 8 — cos 6).

p={1—ax)rl{sinf+cosb—1)

w=—{1—ax)r} (cos # —sin §) 3)

where u, v and w are the axial, tangential and radial displacements, {} is the angular velocity of
the edge AB and a is the normalised slope of the (part) generator AE.

Whilst the velocity field defined by eqns (3) is inextensional, if a# ( the panel undergoes
twisting deformation. Since[6]

po= W 1% 148

T T TP 0T T a8
and

. 18 338 1 au

o = r3x39+4rax*@% @
we have

kx=lég=()and I&x9=aﬂ (5)

within region L.

Using simple symmetry arguments, the velocity fields in region IV and in the panel region
separated from 1 by AB, i.e. region I', can be deduced from eqn (3).

InregionI', x<0and 0< 6 < 72

= - arf) (%-e+sin9—-cos(})

t=(1+ax)rQ{sinf+cos -1
b=~ {1+ ax) r{l (cos § —sin 8). 6}
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In region IV, x >0 and —7/2<0 <0

1 = arX} (%+0—sin0—cos 0)

p=(1-ax) rd(sin®—cos 6+1)
w=—(1—ax) rl(cos  +sin ). (7

For cylindrical shells it can also be shown([9] that the relative rotation rates between adjacent

zones are given by
. Iw
(0] [ 38 ]

- _ [ - Lol
Qx = [ax]and Qg r . (8)

Analysis of various collapse mechanisms

Proceeding in the usual manner for constructing upper bound solutions in limit analysis, we
consider various competing collapse mechanisms and then determine the range of applicability
of each. It can be shown that there are three competing mechanisms and these are shown in
Figs. 2(b, ¢ and d). (The mechanism similar to Fig. 2c but with a <(1/L) can be shown to give
an inferior solution to the case a > (1/L).) When calculating the energy dissipation rates one can
use the symmetry in the velocity fields and need only calculate the energy dissipation rates in
hinges AE, AB and (where applicable) EF as well as the plastic work rate involved in the
twisting of, say, region L.

Because of the simple geometry most of the terms in eqn (8) are zero for particular
hinges since either 8 = 0 or #/2 if n; are associated with the x and ¢ directions. We will therefore
consider each hinge in turn.

Hinge AB: Let 945 = energy dissipation rate within hinge AB. From eqns (3) and (6) it can be
shown that the only non-zero terms in eqn (2) arise from [#] and [dw/dx], i.e. the N, and M, terms.
Again, following Jones and Walters [9], we use the limited interaction yield surface shown in Fig. 3,
which, together with the associated normality rule, implies that |N,| = Ny = oot and |M,|= M, =
(oot’/4) where o is the uniaxial yield stress of the material.

Thus
w4 .
B ap = 2[ {Nx[u] +M, ["—W]} rde.
0 dax

Now,

[i] = 2ar°Q) (%- 8+ sin 0 - cos o)

Fig. 3. Limited interaction yield surface.
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and

Iw .
[5;] =2ar() (cos 6 —sin 6).

Since [#]<0 and [dw/dx]>0, the normality rule implies that N, =-N, and M, = M,,
therefore

B 4
Pop =2 j {2Noar20(cos 6—sinf+6— %) +2MyarQ (cos 6 — sin o)} rdo
0

_ 4arZQ{Nor<\/2 - % (%)2 - 1) + My (V2 1)}-

Let
2
b= \/2—% (%) —1=0.106 and ¢ = /21 = 0.414.
. . . @AB = 4arZQ(N0rb + Moc). (9)

Hinge AE: Let 9,z = energy dissipation rate within hinge AE. From eqns (3) and (7) it can be
shown that the only discontinuity across AE is in 9w/36. Thus from eqn (2) we have

5]
@Ab':f ——dx

0 r

where [9w/30] = 2(1 — ax)r(}, so that
Gup = I 2M,(1 - ax)Q) dx. (10)
0

If the length of region I is s (i.e. AE =5 in Fig. 2a), the rate of dissipation of energy in
plastic twisting of the region is given from eqn (1) by

, s a2 .
@T = J’ f 2Mx0 Kxg rdédx.
0 Jo
Using the limited interaction surface and eqn (5) leads to
.
QZT=-Q-MoarQs. (11)

Equations (8), (10) and (11) will now be incorporated into the analyses of the collapse
mechanisms shown in Figs. (2b—d).

Ring mode (Fig. 2b). In this case a =0and s = L so that @,5 = 9 = 0. Since the generalisad
strain rate associated with M, reduces to 2Q(> 0) we have M, = M,, hence

L
Dag = f 2MoQddx = 2M,Q L.
0

Equating the rate of working of the external forces to the rate of energy dissipation in the
hinges, we have

2Pr =894 = I6MQL

SML _ 20t°L

. P=Pg= . .

(12)
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This is of course the usual four hinge mechanism collapse load for a ring subjected to point
loads {10} or the initial collapse load of a tube compressed between flat plates{11].

Reversing ovality mode (Fig. 2¢). It can be shown that the only significant mode which
involves bending of the generators and in which the whole of the tube deforms is that shown in
Fig. 2(c), i.e. with @ > (1/L); the ends of the tube ovalise in the reversed sense to the central
cross section. Because of this there is a change in the sign of the generalised strain rate
corresponding to M, and thus we have

M,= M, for()sx<£
M, =M, for;rl—<x~<:..L.

Equation (1) then becomes

.GBAE=2MOQ{ Di;a(1~ax)dx+fl:l (ax—~1)dx}
=2M0 (5 +9‘~2‘?~»L)

Equation (11) gives
Pr= Z’Z-Momm.

The work ratef/energy dissipation rate equation for this mechanism gives

2Pr(l = 4@)43 + 8@‘45 + 8@7‘

20012 L?
P =8a,tra (rb+ 4)+ "r" ( +———“2 —L)+l;-aot2aL
2 2
2"“ + aoyt r(Sb 42 +—-—§L %) —-———-2"°j L (13)

Before proceeding let us examine the coefficient of the a term. Since b = ¢/4=0.1 and rt> 1,
the second term can be neglected compared with the first. it will be clear below that when this
mode of collapse occurs the third term is an order of magnitude smaller than the last term in the
brackets and can therefore also be neglected. Thus eqn (13) becomes

P=

2 2 2
—z‘r’z’ + agof’r (—3-’15 +L ) ~2ol’L (14)

r r

It will be shown below that the neglect of the two terms described above provides the key
step in establishing the analogy with the beam-foundation problem. The order of magnitude
argument is equivalent to saying that the axial bending and panel twisting contributions to the
total energy dissipation rates for this mechanism are negligible and that the main interaction is
between axial stretching in the central hinge and circumferential bending in the rest of the
cylinder. This is very similar to the conditions identified by Calladine in his approximate elastic
analysis of the “pinched” cylinder.

Minimising the expression for P with respect to a leads to the optimum value of a, a¥,
which is given by

= izm) as
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The collapse load, P, is therefore

2 2
Py = 200t \/ (—2;’ (8br2 +%)) - 2"; L (16)

Localised mode (Figs. 2a and d). The analysis of this final mechanism follows in the same
way as for the two sets of calculations given above with the following modifications.

(i) Since the half-length of the zone of deformation is s then a = (1/s).

(it) The deforming region is bounded by generalised hinges (EFGH and E'F'G'H’) which
separate the deforming part from the rigid end regions (V and V'). It can easily be shown that
Dgr = (1]2) Das.

Equating the work rate of the external forces to the energy dissipation rate for this mode
gives

2Pr() = 4@AE + 8@,45 + 8@51: + 8@7.

Substituting for the various dissipation rates and once more ignoring the axial bending
contribution in P,p gives

bt s =

P = 160'(;T+GQT+ 2 0’0?2. (17)

Minimising with respect to s leads to optimum values for s = s* and P = P;. Thus
s*=4r \/ (%)

Pp = 80yt? \/ (%-’) +—’2f oot (18)

and

For the rt ratios usually considered, the first term is significantly greater than the second
{(which arises from the twisting deformation) and this is again ignored to give

P=8au" (*’T’) (19)
Ranges of validity

By examining the conditions for which each of the three collapse loads is less than the other
two it is easily shown that the various mechanisms are applicable only within certain ranges of
tube length. These are summarised below:

P-= Py for 0<L<2,\/(Z§’_’)

Pe=Po for 2r \/ (g—i’—”) <L<8r \/ (?;f) 20)

Pe=Pp for L>8r \/(%1)

where Pc is the collapse load for the “‘pinched” cylinder.

ANALOGY WITH RIGID-PLASTIC BEAM-FOUNDATION PROBLEM
Centrally loaded rigid-plastic beam supported by a rigid-plastic Winkler foundation
Consider a rigid-plastic beam of length 2L having a yield moment M, and supported by a
rigid-plastic foundation with yield pressure p,. The calculation of the collapse values of the load
P applies at its center as shown in Fig. 4(a) is straightforward and can be considered as a special
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I
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2L
(a)
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b}

(c)

(d}

Fig. 4. (a) Rigid-plastic beam on rigid-plastic foundation with a central load, P. (b)~(d) Alternative collapse
modes.

case of those problems treated by Bostrom[12]. Consequently, details of the solution will be
omitted. There are three competing collapse modes which are shown in Fig. 4(b—d) and their
corresponding collapse loads and ranges of validity are as follows

— 2M
Py=P,=2pL for o<L<\/(_5;z)
2M, M
— P, = 2w _
Pp = Py =20/(2po(2M, + poL*)) — 2poL for \/ (—-—Epo ) <L<4 \/ (;GE)

Py = P, =4v(Mypo) for L>4 \/ (";4:) 1)

For the localised mechanism (Fig. 4d), the optimum value of sz, ss*, is given by

sp* =2 \/ (%%—) @)

Rigid-plastic cylindrical shell subjected to a central ring load

As indicated in the introduction, the problem of a rigid-plastic cylindrical shell to which is
applied a radial ring load has been examined by a number of authors[1-3]. The solution of the
problem posed by an inward ring load of Pjunit length applied at the central cross section of a
free-ended cylinder (Fig. 5a) is particularly simple when the limited interaction yield surface
used earlier is applied and will be included for completeness. For a cylinder of radius R, length
2L and wall thickness T, the material having a yield stress o, the solution’ again consists of
three possible collapse modes (ignoring the possibility of circumferential buckling) which are
shown in Figs. 5(b~d). Summarising the solution in the same manner as above, the collapse
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P,y Junit length

NI i

e /’
{ /
!
: ! 2R
§ y !
5 * !

L1\ ~ _{

{b}

T Plunit length

Py / unit length

Fig. 5. {a) Rigid-plastic cylinder subjected to ring-load applied at central cross section. (b}-(d) Alternative
collapse modes.

values of P, P,, are given by

_p 2ooTL RT
P,=P R for 0<L<\/(T)
Py=Py=22L yrT 420y -20IL 4 \/ (53) <L <2V(RT) 23)
ATHTIT TR R 2
20'0T
Py=Pm=""%" V(RT) for L>2v/(RT).

The optimum value of the half-length of the deformed zone for the localised mode (Fig. 5d),
54 = Sa*%, is given by

sa*=V(RT). (24)

Beam-foundation analogies

It is clear from eqns (21)-(24) that a formal analogy exists between the solution of the
beam-foundation problem and that of the ring-loaded cylindrical shell. This can be expressed as
follows

PgeoP,

2
M P @“'—UZT

p«—»%z. (25)

Similarly the approximate solution for the ‘‘pinched” cylinder as expressed by eqns (20) can
also be associated with the solution of the beam-foundation problem through the relationships
PyesPe

Mp*’*4b0’orz t

2
P (26)
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Discussion of the beam-foundation analogies

The solutions of the three problems given above constitute the simplest of their type
principally because of the particular yield surface used to represent the behaviour of the shell.
However, whilst more exact yield surfaces modify the details of the solution (and certainly
increase the complexity of the calculations) the qualitative features of the solutions remain the
same vis a vis the number of different collapse mechanisms and the parametric groups that
appear in the solutions.

Having established the basis of the analogy between the rigid-plastic beam-foundation
system and the two rigid-plastic cylindrical shell problems one can, within limits, transiate the
solution of a specific beam-foundation problem into that for equivalent shell problems.
Conversely, one can seek the solution of a given shell problem from a catalogue of solutions of
beam-foundation problems. Since rigid-plastic beam-foundation problems are relatively simple
to solve one can easily produce such a catalogue. Furthermore, the paper by Bostrom[12]
already supplies a useful set of solutions.

This procedure cannot be adopted without justification for all beam-foundation problems. In
particular, if one considers a fixed-ended beam, its response changes due to the influence of
axial forces as the deflection increases[13]. This effect depends upon the nature of the
interaction between the bending moment and axial force within the beam. Whilst similar effects
would be expected in fixed-ended cylindrical shells their deduction from an “equivalent”
beam-foundation problem would require further investigation. Similar caution needs to be
exercised when considering other secondary effects in the post-limit load state such as those
due to strain-hardening.

However, within these limitations, one can establish formal solutions to a whole range of
shell problems in which the loading consists of opposed radial loads applied across a diameter
involving free, position-fixed or built-in end conditions or combinations thereof. These solutions
should only be considered to be formal ones and their usefulness and relevance needs to be
assessed. With regard to the axisymmetric loading problem the usefulness of the limit analysis
solutions is already well established and such solutions are frequently used as an aid to the
design of various components of pressure vessels (see for example Refs. {4] and [14]) and so
they will not be discussed further.

The main topic of interest in this paper is the solution of non-axisymmetric problems as
exemplified by the “pinched” cylinder problem and here the usefulness of the solution is less
clear. As explained in the Introduction, interest in this problem stems from the large deflection
behaviour of tubes crushed by opposed indenters and as such the solution above can be
considered to be a preliminary attempt to provide a suitable theoretical model. This is discussed
more fully in the next section in which a comparison is made with the results of a series of
experiments which have been published recently.

The solution given above is the rigid-plastic equivalent of the elastic solution presented by
Calladine [6] and possesses many of the same features as this solution with regard to the basis
of the beam-foundation analogy and the characteristic length scale, r/(r/t), which appears in
the solution. This would seem to imply the possibility of “long wavelength” behaviour in
rigid-plastic non-axisymmetric loading problems compared with the *‘short wavelength” (length
scale V/(rt)) response to axisymmetric loading, again in broad agreement with the corresponding
elastic behaviour. Also Calladine discusses the “pinched” cylinder by analysing individual
Fourier components of the displacement field and in a similar manner one could analyse the
deformation of a rigid-plastic tube subjected to a series of radial loads equally spaced around a
given circamference. Presumably one would find that, for long tubes, the deformed length
reduced as the number of applied loads was increased in a manner similar to that in the solution
for higher order Fourier components,

COMPARISON BETWEEN “PINCHED* CYLINDER SOLUTION AND
EXPERIMENTS ON THE CRUSHING OF TUBES

Very few attempts have been made to examine the plastic response of locally loaded metal
cylinders. Morris and Calladine[15] analysed the behaviour of a cylindrical shell when loaded
radially through a pair of circular bosses principally to examine the stability of the deformation
when account was taken of changes in geometry. For radial deflections of the order of a few
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thicknesses, the deformation was localised in the vicinity of the boss and they were able to
follow the deformation by postulating a sequence of kinematically admissible velocity fields and
performing corresponding upper bound calculatons. In these the shell was treated as a
three-dimensional body. It is clear that the deformation involved bending and membrane action
although it was found to be easier not to separate these two effects in the manner usually
employed for shell problems. Their main interest was in shells having #/¢ ratios of the order of
50.

The work which motivated the approach described above was that described in [7] which
was concerned with the large deformation of circular tubes produced by opposed wedge-shaped
indenters. The central cross section of the tube was severely ovalised and hence was subjected,
at least qualitatively, to the type of mode of deformation used in the analysis. The main
features of this work will be summarised below and reference will be made to the change in the
nature of the post-yield behaviour as the tube length is increased.

Large plastic deformation of tubes by opposed wedge shaped indenters

Watson et al.[7] recently described a series of experiments in which circular metal tubes
were crushed by a pair of oppposed wedge-shaped indenters applied at the central cross section
of the tube. It was found that, as the tube length was increased, four different modes of
behaviour were observed, these were

(i) Ring Mode (Fig. 6), for short tubes, 2L < 1.5D. In this mode the generators of the tube
remained essentially straight and the tube deformed almost as if compressed between flat plates
extending over the whole length of the tube.

(i) A Transitional Mode (Fig. 7), for medium length tubes, 1.5D < 2L < 5D. The tubes began
by deforming in a pseudo-ring in which the vertical end diameters reduce with the cor-
respponding dimension at the central cross section although at a slower rate. This phase stops
at a certain stage in the deformation after which the vertical diameter begins to increase and
continues to do so for the remainder of the duration of loading (see Fig. 7a).

(iit) A Reversing Ovality Mode (Fig. 8), for tubes for which 2L > 5D. These tubes are such
that the vertical end diameters increase from the beginning of the loading so that the sense of
the ovalisation caused at the ends is opposite to that caused in the vicinity of the central cross
section by the indenters.

(iv) The amount of end ovalisation reduces as the length of the tube increases and for
2L >8D approximately there is little increase in the load carrying capacity of the tube. As
noted in [7], when reversing ovality occurs, the deformation within the wall of the tube appears
to be almost inextensional for the shorter tubes whereas for the long tubes the mode of
deformation shows significant axial stretching. This latter behaviour is coupled with the fact
that the deformation appears to be limited to only certain portions of the tube either side of the
indenter. Qutside these portions the deformation is slight and these parts of the tube do not
contribute to the load carrying capacity as already noted.

A gradual change in the character of the load-deflection graphs is also clear from Figs. 6-8.
The behaviour ranges from a limit load type of response reminiscent of tubes compressed
between flat plates to a response in which it is difficult to detect a collapse load as such and
which might be termed *‘degenerate” in the sense defined by Demir and Drucker[16]. They state
that “limit loads are known to be excellent measures of load carrying capacity for ductile
structures or structural elements when two conditions are met. The first is that excessive
deformations or deflections occur before the influence of strain-hardening becomes appreciable.
The second is that the alteration in the geometry of the structure produced by the deflection has
but a negligible effect on the load required to continue deformation”. They reserve the term
“degenerate” for cases in which geometry changes do have a significant effect in increasing the
load. This occurs principally in situations in which the collapse mode involves bending
deformations which in turn lead to the development of membrane stresses causing a rapid
stiffening of the structural response as exemplified by a clamped plate[17] or beam[13]. For
long tubes there is certainly an element of degeneracy in this sense. It would seem that both of
the phenomena mentioned by Demir and Drucker, strain hardening and geometry change, play a
part in the large deflection response of centrally loaded tubes. The stiffening of the short tubes
as the deflection increases is similar to that of a tube compressed between flat plates. Recently Reid
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Fig. 6. Characteristics of short aluminium tubes (ring mode). (r = tin., £ =0.064 in.). (a) Variation of end
diameters with load-deflection. (b) Load vs load-defiection.

and Reddy([18] have re-examined this problem and have shown that the increase in the load
required to continue the deformation can be attributed in the main to the influence of strain
hardening. However, these shorter tubes do display a clear limit load and strain hardening only has
a significant effect at deflections in excess of 8/D = 0.3, say.

In summary, therefore, the problem examined by Watson et al.[7] is a most complicated one
to analyse fully. An attempt was made however, to produce a quantitative assessment of the
load-deflection behaviour of the reversing ovality tubes up to 6/D = 0.6 by performing an upper
bound calculation based upon the mode of deformation suggested by the experiments. This
neglected the effects of strain hardening and produced reasonable agreement with the experi-
mental data which would seem to imply that the degeneracy effect (i.e. the bénding-membrane
stretching interaction) perhaps predominates in this deflection range.

Comparison with “pinched” cylinder solution

The limit analysis solution described above is characterised by the fact that the whole of the
central cross section of the tube is involved in the deformation mode. For short tubes which
have a reasonably well defined limit load this assumption is reasonable and the collapse load is
adequately estimated by eqn (12). Using the relevant yield stress (which is 35,000 Ibf/in.?), eqn
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(12) gives a limit load of 143Ibffin. of tube length. As the tube length is increased the
problem becomes increasingly degenerate and one feature of this is that the first departure of
the load-deflection curves from linearity becomes independent of the tube length (unlike Fig.
6b) and is governed by local deformation around the indenters similar to that examined by
Morris and Calladine [16]). Thus the onset of nonlinearity occurs in Figs. 7(b) and 8(b) at around
400450 Ibf. The collapse loads given by eqns (16) and (19), being based on a collapse
mechanism which differs significantly from the localised collapse mechanism observed experi-
mentally, therefore, only constitute fairly crude upper bounds. (They give values of 1,050 Ibf
and 1,476 1bf respectively.) However, as the deformation proceeds the whole of the central
cross section does participate in the ovalisation and this ovalisation “propagates” down the
tube so that cross sections over a finite region of the tube are also affected.

It is therefore likely that, whilst the “‘pinched” cylinder analysis inadequately predicts the
initial limit load, its predictions regarding the influence of the geometrical parameters on the
extent of the deformed region and on the changes in deformation mode may be significant. The
tubes whose behaviour is described in Figs. 6-8 were made of aluminium and had a 2 in. outside
dia. and a nominal wall thickness of 0.064 in. Since the Transitional Mode begins as a Ring
Mode it seems reasonable to combine the two length ranges indicated for the purpose of
comparison with the incipient collapse analysis given earlier. Thus Ring-type behaviour can be
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considered to have ceased when 2L is greater than 4 or 5D. Regarding the switch to the
localised mode of deformation we can assess the minimum length of tube beyond which
additional tube length has minimal effect on the load carrying capacity of the tube from Fig.
8(b). This indicates that little change occurs when the length exceeds 8 or 9D. Equation (20i)
predicts that a switch from Ring Mode to Reversed Ovality occurs at L =2r +/(Q2brit)
= D+/(2brft). Using r=1in., t =0.064in. and b =0.10in. gives 2L = 3.6D. Equation (20iii)
indicates that the change to the localised deformation mode occurs at L =8r \/(br{t)=4D
V(brit), i.e. 2L = 10D. Both of these estimates are therefore in reasonable agreement with the
observations from the experiments.

CONCLUSIONS

An upper bound solution for the problem of a “pinched” free-ended circular cylinder has
been presented which incorporates the effects of cross-sectional ovalisation as opposed to
local plastic collapse. By comparing this solution with the solution of an equivalent rigid-plastic
beam-foundation problem a simple analogy is established between them by which the formal
solutions of a range of similar shell problems can readily be produced.

In order to examine the limitations of the solution a comparison is made with the behaviour
of aluminium tubes centrally loaded by opposed indenters. Whilst the limit loads are shown to
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be rather crude estimates of the levels at which plastic effects first become dominant in the tube
response, the roles of the various geometrical parameters in affecting changes in deformation
mode are predicted with reasonable accuracy. It is clear that if a theoretical model is required
for the small deformation plastic behaviour of locally loaded metal tubes, a method such as that
described by Morris and Calladine[16] should be used which can cope with the onset of
degeneracy and follow its development.

Acknowledgement—The author would like to express his gratitude to Mr. C. R. Calladine and Mr. T. Yella Reddy for
useful discussions during the preparation of this paper.
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APPENDIX
If one considers a ring of radius r subjected to a pair of opposed point loads, it has been shown[10, 11] that a suitable
initial collapse mode is the four-hinge mode shown in Fig. 9. Considering the quadrant 0 < 8 <({nf2), its incipient motion is
one of rotation about the instantaneous centre C. The radial and tangential velocity components of a typical point Q are

w=—xofland v = yo{)

where xg and yq are the lengths shown in Fig. 9 and £ is the angular velocity of the quadrant in the incipient deformation
mode. Simple geometry leads to

Xg = r{cos® —sind) and yo = r (sind + cos@ - 1).
Thus
w = r{l (sind —cos8) (Al
¢ = r{) (sinf + cosf — 1). (A2}

These equations describe the basic ovalising velocity field for a ring and since the mode of deformation of the *“‘pinched”
cylinder is one in which each cross-section ovalises, they will be taken as the basis for describing the velocity field of
segments of the cylinder.

Let us assume that the mode of deformation is a simple extension of that for a tube compressed between flat plates and
consists of four cylindrical panels in each half of the cylinder as shown in Fig. 2(a). Furthermore, let us assume that the
mid-surface of the panels is inextensional except possibly across generalised hinges separating the various sectors of the
cylinder. The conditions of inextensibility are[19]

di _
=0 (A3)
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In general, these lead to
u=f(8), v=(p+qx)g(®and w=—(p+qgx)g'(8)

where f is an arbitrary function of 8 which is related to g through eqn (AS5). From (A)) and (A2) clearly in this case
g{8)=sinG+cosf— 1.

Also if the radial velocity at A (Fig. 2} is — #{} then we have p = r{}. Allowing for the magnitude of the radial velocity to

reduce away from the load we put ¢ = — ar(}, where « is the normalised slope of the top generator and conclude that

W=~ (1 ax)rl(sing - cosd) (A7)
(A8)

9 = (1—ax)rQ(sind + cosd — 1)

describe the radial and tangential components of such a mechanism.

From (AS) we have :
£(8) = ar*(Usiné + cosé ~ 1)

ie. f(8)=ar*(}sin@—cos#—8+K)

where K is a constant of integration. For convenience we stipulate that i = 0 at § = (n/4) which leads to
(A9)

i=f(8)=ar (%— 9+sinf - coso).

Equations {AT){A9) therefore provide a velocity field for the octant 0 <8 <(nf2), x>0 of a “pinched” cylinder which

incorporates the effects of cross-sectional ovalisation.



